
Theor Appl Genet (2007) 115:277–287 

DOI 10.1007/s00122-007-0568-3

ORIGINAL PAPER

High-density Brassica oleracea linkage map: identiWcation 
of useful new linkages

Muqiang Gao · Genyi Li · Bo Yang · Dan Qiu · 
Mark Farnham · Carlos Quiros 

Received: 5 January 2007 / Accepted: 23 April 2007 / Published online: 22 May 2007
© Springer-Verlag 2007

Abstract We constructed a 1,257-marker, high-density
genetic map of Brassica oleracea spanning 703 cM in nine
linkage groups, designated LG1–LG9. It was developed in
an F2 segregating population of 143 individuals obtained by
crossing double haploid plants of broccoli “Early-Big” and
cauliXower “An-Nan Early”. These markers are randomly
distributed throughout the map, which includes a total of
1,062 genomic SRAP markers, 155 cDNA SRAP markers,
26 SSR markers, 3 broccoli BAC end sequences and 11
known Brassica genes: BoGSL-ALK, BoGSL-ELONG,
BoGSL-PROa, BoGSL-PROb, BoCS-lyase, BoGS-OH,
BoCYP79F1, BoS-GT (glucosinolate pathway), BoDM1
(resistance to downy mildew), BoCALa, BoAP1a (inXores-
cence architecture). BoDM1 and BoGSL-ELONG are linked
on LG 2 at 0.8 cM, making it possible to use the glucosinolate

gene as a marker for the disease resistance gene. By QTL
analysis, we found three segments involved in curd formation
in cauliXower. The map was aligned to the C genome linkage
groups and chromosomes of B. oleracea and B. napus, and
anchored to the physical map of A. thaliana. This map adds
over 1,000 new markers to Brassica molecular tools.

Introduction

After the construction of the Wrst substantial linkage map of
B. oleracea, with isozyme loci, pioneered by Arus and
Orton (1983), several others have followed using a variety
of molecular markers (for review see Quiros 2000 and Qui-
ros and Paterson 2004). Little eVort was spent at that time
to align these maps across laboratories and to perpetuate the
mapping populations used for their construction. However,
it was possible to assign some of the linkage groups to their
respective chromosomes with alien addition lines (Hu and
Quiros 1991; Heneen and Jorgensen 2001). Sebastian et al.
(2000) established a consensus map for this species based
on perpetuated individuals from two double haploid popu-
lations, (cauliXower £ Brussels sprouts and broccoli £
kale) constructed with 547 RFLP, AFLP and SSR markers .
Its nine linkage groups have been now physically assigned
to their respective chromosomes by Howell et al. (2002)
using FISH. Furthermore, these chromosomes have now
been aligned with the linkage groups for both the A and C
genomes in B. napus by Bohuon et al. (1996), Lowe et al.
(2004) and Piquemal et al. (2005). With the availability of
EST sequences from Arabidopsis, these were used to
construct several maps allowing partial comparison of the
A. thaliana genome with the B. oleracea genome (Kowalski
et al. 1994; Lan et al. 2000; Babula et al. 2003). This task
was also accomplished by Li et al. (2003) using cDNA
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polymorphisms to construct a linkage map in B. oleracea,
followed by comparative physical mapping to A. thaliana.
Parkin et al. (2005) has now aligned all linkage groups of
B. napus to A. thaliana with RFLP markers.

We report the construction of a high-density genetic map
based on the broccoli £ cauliXower F2 population used by
Li et al. (2003), adding various types of PCR-based markers
and sequences of known genes. Each linkage group has been
assigned to their respective chromosomes based on common
markers with the Sebastian et al. (2000) and Piquemal et al.
(2005) maps and to the chromosomes of A. thaliana. Fur-
ther, the map was used to determine QTLs for curd forma-
tion, which segregates in this population. Assignment of the
linkage groups of this map to their respective C genome
chromosomes adds over 1,000 new markers as mapping
tools for B. oleracea and B. napus. The contribution of a
substantial amount of new markers from our map will
increase the eYciency of marker-assisted selection and map-
based gene cloning in B. oleracea and B. napus.

Materials and methods

F2 mapping population

To construct this map, we used the same F2 segregating
population as that used by Li et al. (2003) to construct a
transcriptome map based on cDNA-SRAPs in B. oleracea.
It was developed by crossing two double haploid lines
(broccoli “Early-Big” and cauliXower “An-Nan Early”),
then selWng the F1 to make 143 F2 plants, which were used
as parents to generate inbreds by single seed descent. In
addition to the existing cDNA markers (Li et al. 2003), we
added genomic SRAP markers, SSR markers, B. oleracea
BAC clone sequences (B40L6, B59A4, B59C4) and
sequences corresponding to 11 known B. oleracea genes.

Genetic markers

A total of 170 primer pairs, including 87 SRAP primers
labeled with IRDye 800 or IRDye 700 Xuorescent dyes
combined with various unlabeled primers (Table 1), were
used to amplify genomic DNA in the F2 population follow-
ing the protocol of Li and Quiros (2001). The sequences of
these primers have been published by Sun et al. (2007)
(in press). The PCR products were run in 5% polyacryl-
amide with the Li-Cor Global IR2 4200 sequencing system.

Public SSR primer sequences were obtained from http://
brassica.bbsrc.ac.uk/cgi-bin/ace/searches/browser/Brassica
DB and some from published papers (Sebastian et al. 2000;
Smith and King 2000). A total of 50 SSR primer pairs were
screened between two parents. Of these, 24 SSR primer

Table 1 Primer pairs for the SRAP markers used in this study. Primer
sequences reported in Sun et al. (2007) (in press)

Markera Primer

m1–9 me2 + od4

m10–15 dc1 + od4

m16–22 me2 + odd2

m23–27 dc1 + od4

m28–34 em2 + od1

m35–39 em2 + od3

m40–44 em1 + od3

m45–51 em1 + od2

m52–55 dc1 + od2

m56–m59 em1 + od4

m60–64 dc1 + ga30

m65–75 me2 + od11

m76–85 em1 + ga30

m86–94 dc1 + od19

m95–102 em1 + od19

m103–109 em1 + od10

m110–115 dc1 + od15

m116–123 em1 + ga29

m124–125 me2 + od12

m126–129 em2 + od5

m130–134 em2 + od4

m135–138 dc1 + od20

m139–146 em1 + od20

m147–150 dc1 + od21

m151–155 em1 + od21

m156–162 em1 + od22

m163–165 me2 + od8

m166–173 me2 + od5

m174–185 em2 + od26

m186–195 me2 + od26

m196–199 em1 + od30

m200–201 em2 + od32

m202–207 dc1 + od33

m208–210 em1 + od33

m211–215 dc1 + od36

m216–221 dc1 + od35

m222–233 em1 + od35

m234–235 em2 + od20

m236–239 me2 + od15

m240–245 dc1 + od34

m246–256 em2 + od30

m257–264 dc1 + od30

m265–270 me2 + od30

m271–274 em2 + od14

m275–278 me2 + od32

m279–283 me2 + od23

m284–292 em2 + od23
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Table 1 continued

Markera Primer

m293–303 em2 + od15

m304–307 me2 + ga2

m308–315 me2 + ga5

m316–322 me2 + ga6

m323–335 me2 + ga15

m336–341 me2 + ga19

m342–348 me2 + ga22

m349–356 me2 + ga27

m357–363 me2 + ga31

m364–367 me2 + ga32

m368–372 me2 + ga39

m373–381 me2 + ga41

m382–387 me2 + ga42

m388–396 me2 + ga45

m397–398 me2 + sa4

m399–406 me8 + sa7

m407–416 me8 + ga3

m417–425 s12 + pm5

m426–436 ga5 + pm1

m437–446 s12 + pm4

m447–456 od3 + pm5

m457–466 od3 + pm3

m467–481 s12 + pm3

m482–501 s12 + pm1

m502–513 od3 + pm1

m514–519 em1 + od50

m520–523 dc1 + od54

m524–528 dc1 + ga6

m529–532 em1 + od51

m533–540 dc1 + ga22

m541–542 dc1 + od55

m543–544 em1 + od46

m545–551 em1 + od45

m552–555 em1 + od43

m556–570 ga3 + pm1

m571–587 ga3 + pm3

m588–600 ga3 + pm6

m601–611 ga5 + ce12

m612–626 od3 + ce7

m627–635 od3 + ce12

m636–652 o15 + ce12

m653–667 o26 + ce12

m668–681 od26 + pm1

m682–698 od26 + pm5

m699–709 od26 + pm6

m710–729 s12 + pm1

m730–751 s12 + ce7

m752–766 s12 + ce10

Table 1 continued

Markera Primer

m767–786 s12 + ce12

m787–797 em1 + ga3

m798–820 em1 + ga5

m821–830 em1 + ga6

m831–832 em1 + od24

m833–839 em1 + od38

m840–847 em1 + od39

m848–853 em1 + od40

m854–858 dc1 + ga3

m859–863 dc1 + od54

m864–868 dc1 + od37

m869–876 dc1 + od38

m877–883 dc1 + od39

m884–886 dc1 + od43

m887–894 dc1 + od48

m895–898 dc1 + od49

m899–901 dc1 + ga2

m902–906 dc1 + od40

m907–910 em1 + ga10

m911–918 od8 + pm1

m919–922 ga3 + ce12

m923–927 od8 + ce7

m928–934 od8 + pm4

m935–944 od8 + ce8

m945–949 od8 + ce9

m950–962 o15 + pm1

m963–972 od15 + ce9

m973–979 od26 + sa1

m980–987 od26 + o3

m988–995 s14 + pm3

M996–1005 s14 + c8

M1006–1014 s17 + ga1

M1015–1018 s17 + ga2

M1019–1026 me2 + s9

M1027–1038 me2 + s16

M1039–1045 me8 + s14

M1046–1049 me8 + s15

M1050–1061 em1 + od52

S1–11 dc1 + odd15

S12–20 dc1 + Me2

S21–26 dc1 + Mc4

S27–33 dc1 + odd10

S34–40 dc1 + Mc5

S41–42 Me2 + eM8

S43–53 eM2 + odd15

S54–58 Me8 + odd15

S59–73 dc1 + Mc7

S74–90 eM2 + fc3
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pairs showing polymorphism between two parents were run
in the F2 population.

Map construction

The map was constructed with the program Joinmap 3.0
(LOD score from 4.0 to 8.0). SRAP markers from genomic
DNA were developed for this map (starting with M or S on
the actual map). These were combined with 155 cDNA
SRAP markers (Li et al. 2003), 26 SSR markers (starting
with OL on the map, or named NGA248, LS107, sORA21b,
MB4), three BAC end sequences: B40L6 (corresponding to
A. thaliana At5g23400), B59A4 (At2g03240), and B59C4
(At4g29905) and 11 B. oleracea genes as follows: glucosino-
late pathway: BoGSL-ALK, BoGSL-ELONG, BoGSL-PROa ,
BoGSL-PROb, BoCS-lyase, BoGS-OH, BoCYP79F1, BoS-
GT; resistance to cotyledon stage downy mildew: BoDM1;
and inXorescence development: BoCAL ,and BoAP1. Primer
sequences used to map these genes are shown in Table 2.

Table 1 continued

a Marker gel migration and primer sequences provided as supplemen-
tary information

Markera Primer

S91–96 eM2 + Mc5

S97–106 dc1 + Me10

S107–110 dc1 + Me1

S111–117 dc1 + fc8

S118–120 dc1 + odd4

S121–127 dc1 + Me8

S128–137 dc1 + Me9

S138–142 dc1 + ga30

S143–154 dc1 + odd30

S155–165 eM1 + ga23

S166–170 eM1 + dc1

S171–172 eM2 + Me9

S173 eM1 + fc3

S174–176 eM2 + Me8

S177–192 dc1 + ga23

S193–202 eM2 + ga23

S203–212 eM2 + ga30

S213–217 eM2 + eM8

S218–221 eM2 + Mc7

S222–228 eM2 + Me2

S229–233 Me8 + ga23

S234–238 Me8 + odd30

S239–246 Me2 + odd30

S250 dc1 + ga29

S251–252 eM2 + odd30

S253–254 Me2 + eM7

S255–260 Me2 + ga23
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Alignment of our map to existing maps and assignment 
of linkage groups to speciWc chromosomes

A total of 26 SSR markers and 77 SRAP markers were
compared with the current B. napus and B. oleracea maps
(Sebastian et al. 2000; Howell et al. 2002; Lowe et al.
2004; Piquemal et al. 2005; Qiu et al. 2006). Following the
rationale of Li et al. (2003), 155 cDNA markers, 11 known
gene sequences and three BAC-end sequences were use for
alignment with Arabidopsis chromosomes.

QTL mapping of curd phenotype

We visually scored each of the F2 plants in the greenhouse
and F3 families in the Weld and greenhouse for inXores-
cence type in three major classes: 1 = broccoli-like,
2 = intermediate and 3 = cauliXower-like based on the scor-
ing system of Labate et al. (2006). QTL determination was
carried out by composite interval mapping with the soft-
ware WinQTLCart 2.0 (Zeng. 1994). The threshold LOD of
2.50 was selected based on a 5% signiWcance level deter-
mined by 300 permutations.

Results

Construction of the map

A 1,257-marker high-density genetic map of Brassica oler-
acea was constructed and spanned 703 cM in nine linkage
groups designated LG1–LG9. Most of these markers were
randomly distributed throughout the map (Fig. 1). It
included a total of 1,062 genomic SRAP dominant markers
generated with the 170 primer pairs. On an average, 6.2
SRAP polymorphic markers were produced per primer pair.
All 155 cDNA SRAP markers produced by Li et al. (2003)
in the same population were integrated into the nine linkage
groups of this map. Of the 50 SSR primer pairs screened
between two parents, only 24 showed polymorphism. The
24 SSR primer pairs found to be polymorphic between the
two parents generated 26 SSR markers. Of these, 26 mark-
ers were mapped into the nine linkage groups.

The eight glucosinolate genes, BoDM1, BoCAL and
BoAP1 and three BAC clone end sequences were scored as
co-dominant markers. BoGSL-ELONG and BoDM1 were
mapped on BoLG2, 0.84 cM apart. Giovanelli et al. (2002)
reported RAPD marker OMP-750 linked at 3 cM to
BoDM1 in B. oleracea. After sequencing of this marker, we
found conservation of the chromosome segment containing
BoGSL-ELONG and OMP-750 in A. thaliana. The OMP-
750 Arabidopsis homolog is in BAC MOP9 and is 53 Kb
apart from At5 g23020, which corresponds to the BoGSL-
ELONG gene (Gao et al. 2005) (Fig. 2). Downstream from

the BoGSL-ELONG ortholog, there is a putative disease
resistance gene, At5 g23400. Screening of the B. oleracea
“Early Big” BAC library produced clone B57M17 harbor-
ing the gene corresponding to At5 g23400. Sequencing of
this gene in B. oleracea revealed that it has 1,764 bases, it
is intronless and has 86% identity with At5 g23400 (data
not shown). A marker developed from sequencing the Bras-
sica homolog to this gene on this BAC clone, co-segregated
with BoGSL-ELONG, revealed further conservation of the
chromosomal segment in both species. The mapping prog-
eny did not segregate for downy mildew resistance, there-
fore it was not possible to conWrm whether the At5 g23400
homolog is the true gene for BoDM1. Genes BoCAL and
BoS-GT mapped on BoLG3, BoGSLPROa, BoGSL-PROb
(previously named BoGSL-PRO and BoGSL-PROL, respec-
tively; (Gao et al. 2006) and BoCYP79F1 mapped on
BoLG5. The Wrst two genes were only 0.027 cM apart.
They are duplicated gene members of the MAM (meth-
ylthioalkylmalate synthase) gene family (Gao et al. 2006).
BoAP1-a and BoCS-lyase mapped on BoLG 6. BoGSL-ALK
and BoGS-OH mapped on BoLG9 5.4 cM apart. These two
genes are members of the AOP (2- oxoacid-dependent
dioxygenases) family. The latter corresponds to the A. tha-
liana ortholog (at2 g25450) and has not been previously
mapped on Brassica.

Alignments to C genome linkage groups 
from other B. oleracea and B. napus maps

Using 22 common SSR markers, we were able to align the
linkage groups of our map to the genome speciWc groups of
B. oleracea and B. napus. The nine linkage groups BoLG1–
BoLG9 on our map are equivalent to the B. oleracea linkage
groups O1–O9 (Sebastian et al. 2000; Howell et al. 2002)
and B. napus linkage group N11–N19, respectively (Bohuon
et al. 1996; Lowe et al. 2004; Piquemal et al. 2005)
(Table 3). Of the genomic SRAP markers in our map, 77 had
also been included in an ultradense B. napus map constructed
by Sun et al. (2007) (in press). Thus, it was possible to align
both maps, conWrming our previous assignment of our link-
age groups to the N11 through N19 standardized groups.

Based on the physical assignment of the linkage groups
in the map developed by Sebastian et al. (2000) and Howell
et al. (2002), our linkage groups BoLG1–BoLG9 are analo-
gous to their linkage groups, which corresponds to the C
genome chromosomes 8, 5, 1, 2, 6, 9, 4, 7 and 3, respec-
tively (Fig. 1).

Alignment of B. oleracea linkage groups 
and the Arabidopsis thaliana physical map

Our map was compared to the Arabidopsis physical map
with 11 gene sequences, three BAC-end sequences, and
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155 cDNA markers. As expected , the alignment between
the B. oleracea linkage groups and chromosomes of A. tha-
liana (Fig. 1) fully agrees with that reported by Li et al.
(2003). However, there was only partial agreement with the
alignment reported for the C genome chromosomes of B.
napus and A. thaliana chromosomes by Parkin et al.
(2005). Lack of total agreement between the two reports is

not unexpected considering that none of the two maps are
complete.

QTL mapping of curd phenotype

The frequency distribution for inXorescence type, charac-
terized as broccoli-like versus exhibiting curd formation in

Fig. 1 Linkage groups LG1–
LG9 for the B. oleracea map and 
their correspondence to the C ge-
nome chromosomes (C1–C9). 
cM are shown on the left side. 
Bars on the right indicate 
homologous segments to chro-
mosomes 1–5 of A. thaliana
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the mapping populations is shown in Fig. 3. Although in
general it followed a bell-shaped curve, it was skewed
toward the broccoli phenotype. Three chromosomal regions
for curd formation were detected in this population by sta-
tistically signiWcant QTLs. Two QTLs in BoLG1 explained
21 and 6% of the variation, respectively. These two were
17 cM apart with non-overlapping conWdence intervals.
The third QTL was on BoLG6 associated with BoAP1-a
and explained 15% variation. No QTLs were detected in
the linkage group regions containing the BoCAL-a and
BoGSL-ELONG genes (Table 4).

Discussion

The number of markers, linkage group coverage and den-
sity reported in our map and its alignment to the B. olera-
cea maps of Sebastian et al. (2000) and Howell et al.
(2002), and to the B. napus maps of Lowe et al. (2004),
Piquemal et al. (2005), Parkin et al. (2003, 2005), Qiu et al.
(2006) and Sun et al. (2007) (in press) add a signiWcant
number of markers to the C genome useful for marker
assisted selection and map-based cloning in both species. Basi-
cally, we have added 1,257 markers to the B. oleracea maps

Fig. 1 continued
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(Table 3). The level of polymorphism of genomic SRAP
markers between broccoli and cauliXower is high, so simi-
lar levels are expected between other more divergent Bras-
sica crops, such as broccoli and kale (Li and Quiros 2001).
Although most of these markers are dominant, they could
be quite eYcient for marker-assisted selection when associ-
ated in repulsion phase to genes targeted for selection

(Haley et al. 1994). Regarding the usefulness of a high-
marker density map for map-based-cloning, it can be esti-
mated based on genome size and map length, that 1 cM
corresponds to approximately 800 Kb in B. oleracea. How-
ever, this value must be taken conservatively considering
the variation in density along the chromosomes. An exam-
ple of this is the positional cloning of gene BoGSL-ALK

Fig. 1 continued
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tagged with a marker at 1.4 cM, but at a physical distance
of less than 100 Kb (Li and Quiros 2003).

Further, anchoring this map to the A. thaliana physical
map is an important asset because the latter could serve as a
useful source of additional markers to saturate speciWc seg-
ments carrying a gene(s) of interest in B. oleracea. Discrep-
ancies of alignment between the C genome chromosomes
of B. oleracea and B. napus might reXect chromosomal
structural changes during alloploidization and stabilization
of B. napus (Song et al. 1995).

Several linkages described in this paper are of particular
interest. For the downy mildew resistance gene BoDM1, we
populated the BoLG 2 region with three markers including
the gene BoGSL-ELONG. Some of these markers should
prove more useful than others previously described (Gio-
vannelli et al. 2002) for marker-assisted selection to
develop cotyledon stage downy mildew resistance. Another
interesting linkage on BoLG9 was for the AOP gene family
members BoGSL-ALK and BoGSL-OH. These genes act
sequentially in the side chain modiWcation of aliphatic gluc-
osinolates, the Wrst directing desaturation to produce alke-
nyl glucosinolates and the second one their subsequent

hydroxylation (Li and Quiros 2003). In A. thaliana, there
are three AOP genes in triplicate, GS-OH (AOP3), GS-ALK
(AOP2) and AOP1 (unknown function) (Gao et al. 2004).
Similar to A. thaliana, in B. oleracea, BoGSL-ALK and
BoAOP1 are next to each other, but both are duplicated in
tandem and the sequence corresponding to the gene GS-OH
is absent (Gao et al. 2004). Evidently in B. oleracea,
although genes BoGSL-OH and BoGSL-ALK lay on the
same chromosome they are not contiguous as in A. thali-
ana. Another conserved linkage is between the MAM gene
family members BoGSL-PROa and its duplicate BoGSL-
PROb involved in the synthesis of 3 carbon side chain gluc-
osinolates (Gao et al. 2006). These are homologs of the
same Arabidopsis gene (At1 g18500) located at the top of
chromosome 1.

Among the glucosinolate pathway genes that we
mapped, BoGSL-ALK, BoGSL-ELONG and BoGSL-PRO

Fig. 2 Maps for BoGSL-ELONG and BoDM1. Top, genetic map; bot-
tom, physical map.OPM-750 is RAPD marker reported by Giovannelli
et al. (2002)

GSL-ELONG Dm1   OPM-16 

At5g23020  At5g23400   MOP9 (BAC) 
GSL-ELONG  Putative Dis.Resist.  (OPM-16)

3 cM

35kb 18kb

0.8

Table 3 Marker statistics for B. oleracea map and number of aligned markers with other genetic maps

a Markers in B. oleracea map http://www.brassica.bbsrc.ac.uk/, based on Sebastian et al. (2000)
b To B. napus maps of Lowe et al. (2004); Piquemal et al. (2005) and Qiu et al. (2006)
c To B. napus map of Sun et al. (2007) (in press)

General information Aligned markers

Linkage 
group

SRAP(M,S) CDNA 
marker(T)

SSR Markers for 
genes and BACs

Total An integrated 
mapa

Total Aligned 
SSRb

Aligned 
SRAPc

Total

BoLG1 101 15 2 0 118 46 164 2 4 6

BoLG2 114 26 1 2 143 74 217 1 5 6

BoLG3 127 17 7 3 154 101 255 5 16 21

BoLG4 130 21 4 0 155 56 211 4 12 16

BoLG5 119 7 1 3 130 64 194 1 20 21

BoLG6 111 18 3 2 134 42 176 2 1 3

BoLG7 129 11 2 2 144 55 199 2 5 7

BoLG8 106 23 2 0 131 47 178 2 4 6

BoLG9 125 17 4 2 148 64 212 3 10 13

Total 1062 155 26 14 1257 549 1806 22 77 99

Fig. 3 Histogram showing phenotype distribution for inXorescence
type in F2 mapping population. (phenotype 1 = broccoli; phenotype
2 = intermediate; phenotype 3 = cauliXower)
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have been previously cloned and their function assessed
(Gao et al. 2003, 2004, 2006; Li and Quiros 2002, 2003).
For the rest of the genes, we only mapped their sequences.
Although there were enough diVerences in their sequences
in both parental plants for each of these genes to follow
their segregation in the progeny, we could not follow segre-
gation for their glucosinolate phenotype. This was due to
the fact that the phenotypes of these genes are based more
on glucosinolate amount and not quality, and the broccoli
and cauliXower parents of our population have similar
amounts for most of the glucosinolates controlled by these
genes. The only exception was for gene BoGSL-OH, whose
phenotype is presence/absence of the glucosinolate progoi-
trin. As expected, a major QTL for the presence of this
glucosinolate was found in the map location for gene
BoGSL-OH on LG 9 (data not shown). In any case, the
sequences and Xanking markers of the genes that could not
be associated with speciWc glucosinolate segregation in our
mapping population could be used in other populations,
segregating for glucosinolate amount and composition.
Application of marker-assisted selection in these popula-
tions will be helpful for the development of plants with spe-
ciWc glucosinolate proWles and content.

Although the intention of this paper was not to perform
an exhaustive QTL analysis for curd formation, as was
reported by Lan and Paterson (2000), we took advantage of
the fact that we used two double haploid plants as the par-
ents of the mapping population to do a general analysis to
compare with the results from previous studies. Our pheno-
typic analysis involved only visual scoring for inXores-
cence type and did not include detailed measurements as
done by Lan and Paterson (2000). The three chromosome
segments detected by QTL analysis in our population
explain 42% of the total phenotypic variation for inXores-
cence type. Two of these segments were on LG1, approxi-
mately 17 cM apart, but their conWdence intervals did not
overlap, thus indicating their independence. The other seg-
ment was on LG6. Only the latter fell on a major gene pre-
dicted to be involved in curd formation in cauliXower,
BoAP-a1 (Smith and King 2000; Purugganan et al. 2000).
The peak of this QTL is located at 57.19 cM and the BoAP1
sequence is located at 56.8 cM on LG6, which is in agree-
ment with previous reports indicating that this gene plays a

role in inXorescence architecture. We did not Wnd any asso-
ciation with the BoCAL-a sequence, which is another pre-
dicted gene of similar function (Smith and King 2000;
Purugganan et al. 2000). Thus, our results agree with those
of Labate et al. (2006), who found that the BoCAL-a gene
actually provides very little contribution to the cauliXower
phenotype. Additionally, Lan and Paterson (2000) detected
at least 67 loci, distinguishing broccoli from cauliXower in
a much more exhaustive analysis, including not only of
curd morphology, but also of size, shape and other related
traits. Thus, it is clear from Lan and Paterson (2000),
Labate et al. (2006) and from our study that additional
genes must be involved in curd development.
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